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Q Why do we need fault-tolerant quantum computing?
nt truth about NISQ...
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Why is it great?
 Photon-native operations
e 1 qubit =1 photon

* Fast repetition rate

* Good for NISQ algorithms
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Errors... How bad are these?
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Q Why do we need Fault-tolerant quantum computing?
re bad

How bad are these errors?

10- e Quantum error correction!
% —* quantity hype E EE%E cat::ﬁ ks
g 10-2 o ._ - : ______ E-r-ror_co'rﬁ-:‘c-ti-on—t'hr'e-shad ______ ) Hardwa re:
Q . . .
2 Reducing physical noises
= 103 Shor Do
E Classically 8

10_4 simulatable

107 10° o Software:
Developing a FTQC-based architecture
* Threshold theorem:
if € < &5, we can run any algorithms!
(provided the FTQC is sufficiently big!)
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100 107

Without handling errors
— Only the tip of the Q Algo’s iceberg!



Q) Architecture for real Fault-tolerant quantum computers
e for a photonic platform

What is an FTQC architecture?

* A method to process quantum information

* Together with a hardware layout enabling this method
* All of this being achievable in a fault-tolerant way
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What is the “best” architecture?

* An architecture with maximum fault-tolerance (high threshold)

e Arelatively simple hardware layout (sufficiently simple to be implementable)

* An architecture with relatively small footprint (hardware overhead, energy
consumption...)



® Outline

e C(Classical error correction
* Repetition code / Hamming code
* Quantum error correction
* Challenges of quantum error correction
* Discretization of errors
e Stabilizer formalism
 Simple code (Shor)
* Photonic FTQC
* Graph state structure
e How to build them?
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Q) Simple examples of classical error correction
classical error correction

Simple examples of classical error correction:
* CD Rom Communication protocols (e.g. 5G)

General idea:

In, k,d]
“Encode k logical (protected) bits into n physical (noisy) bits so
that it is protected against |d — 1] /2 bitflips”



Q) The Repetition Code

g classical error correction

The repetition code is a [n, 1, n]| code with a trivial decoder (majority vote)

The logical biti = 0 or 1is encoded as
0, =0..0
1, =1..1

How does it work?

If you receive the bitstring (encoded using a 3-bit repetition code) 010, what is the
most likely error?

Assuming independent symmetric errors (below %), the most likely error is
e=010 and the codeword is 0; = 000



Q Simpler example with classical error correction
classical error correction

Hamming code:
* Encode 4 logical bits [11,151,
* Into7/ phySica| bits b1b2b3b4b5b6b7

Circle constraints

RRTTI

11011 0 0
10110 10
01110 0 1 (b O D



Q Simpler example with classical error correction
sing classical error correction

Hamming code:
* Encode 4 logical bits [11,151,
* Into7/ phySica| bits b1b2b3b4b5b6b7

Circle constraints

@i b; =0 (b, ) S
Invalid codeword ¢ = ¢{¢,C3C4C5C6C7 @
Syndromes =Hc! # 0

Example: H cT = (0,1, 1)7 @ @ @



Q Simpler example with classical error correction
sing classical error correction

General problem of error correction:
“Given a syndrome s, recover ideally the most
likely error that outputs a syndrome s”

T T — g-1g“
Given an error samplmg probability p (e;),
We want (ideally):

MLDec(p(ej),s)

= argmine, [p(e;)[H e; = 5] o> \a/ o

What is the most likely error, having this

syndrome?
Assuming independent symmetric errors (below %), the most likely error is a b3 bitflip only



() General summary of classical error correction
r correction

Correction

Syndrome
extraction
(He = s)

Successful decoding
Decoding c+et+é=c

e+ée=0




That’s all for
Classical Error Correction.

Questions?

s -



Quantum Error C\c{rection
_(intuition)

s -



Q) Challenges of Quantum error correction
shceptually easy?

Challenge 1:
Errors in classical computing are discrete.
Errors in quantum computing are continuous...

Challenge 2:
Measuring a classical bit is trivial.
Measuring a quantum state destroy this state (Born’s rule / Wave function collapse...)

Challenge 3:
Classical error correction needs to protect against bitflips
In quantum computing, the phase is also important!



® Errors are continuous...
hceptually easy?

Target state: |0)

Noisy state: V1 — &|0) + /€ |1)

Measurement in the computational basis
(10) /1))

— |0) with probability 1 — ¢

— |1) with probability ¢

Intuition 1:
1L Errors are continuous but measurements
discretize these errors




QQ Measurements destroy quantum states and entanglement
1ceptually easy?

Is it true for all measurements???

Entangled qubits:
Measurement of the operator ZZ

1 .
7 (100) +[11)) Z1i) = (=1)i}i) for i = 0,1
What are the measurement outcomes and
I\/IeasurementI (z)f the(tZw;) qub)its in the the resulting states?
computational basis asis 1
' — — (11))?
(10 /1)) Same question for — (]00) — [11))
N |O) |O) with probability 1 +1 for both and the state remains the same
’ 2
— |1), |1) with probability% Intuition 2:

Some multi-qubit operator measurements
preserve entanglement and some states.

No entanglement anymore...




() Repetition codes for quantum states
onceptually easy?

|l/)>L — a|0>L + ,3|1)L Measure Z;Z, (+1 outcome and nothing
With |0), = |000), |1), = |111) happens)
Noise: Measure Z,Z5

_ - either +1 outcome and projection in the
Some small unwanted X rotations on ), state

the physical qubits... - either -1 outcome and error detection
‘l/)L> =v]l —-¢ |1/))L a|001) + £]110)

We have obtained the syndrome
measurement s=(0, 1)

+./¢/3(x|001) + £|110)) + o(e)  Link with the parity check matrix?



() Repetition codes for quantum states
y easy?

Correction
Syndrome
extraction

(Measurement
212, Z523)

Decoding

(measurement outcomes)

What about phase flips?



0 The Shor code

hceptually easy?

W), = a|0); + B|1); Alternative code
With |0), = [000), [1), = |111) [Y), = al0), + B[1);
Noise: With |0); = |++ +), |1), = |—— —)
Some small unwanted Z rotations 1
on the physical qubits... [£) = \/_i (10> + 1))
‘{p‘i) =vV1—¢ [Y); Show that it is resistant against phase
++v/€ (a|000) — B|111)) flips (2).
—— What is the operator measurements?
Still a valid logical state! X %) = £|+)

Same discussion as in the usual repetition code, but with X, X,

—Impossible to correct a phase flip... operator measurements



0 The Shor code

shceptually easy?

Concatenating two repetition codes!

0),, =1000), |1),, = [111) |+),, =1000) £ [111)
0), = +++) 1Dy, = |— )

Concatenation: Replace physical qubits from the first code L, by logical

qgubits from the second code.
Shor code:

Q) shor = | +1, 1,11, [ Dsnor = ‘_LZ ~Ly, _LZ>
At the Ly levels, correct one phase flip, at the L, level, correct one bit flip.

What about Y = —iZX rotation errors?



0 The Shor code

ually easy?

|0 chor + B11)shor = @(]000) + |111)®3 + 3(]000) — |111>)‘$’3

If an X error occur on one qubit, one block will look like|001) + |110),
(modulo where the bit flip occurs) which can be corrected by Z,Z,/Z+Z+ in
that block.
If a Z error occurs on one qubit, one qubit block will be flipped:
a(]000) + |111))(]1000) + |111))(|000) — |111))

+£(|000) — |111))(]000) — [111))(|000) + |111))
Which can be detected by measuring logical X} X;_ /X, X, operatoron
each block X;, = X1X3X3, X1, = X4X5Xe, X1, = X7XgXo



0 The Shor code

ptually easy?

|0 chor + B11)shor = @(]000) + |111)®3 + 3(]000) — |111>)‘§3’3

If a'Y error occurs on a given qubit, it’ll flip both a qubit on a given block and
the total block sign which can be signaled by having the X and Z errors at
the same time

Y;(J000) £+ |111)) = —iZX(]000) £+ |111)) = —i|100) + |011)
(The global phase i is irrelevant)
So aY error can be corrected as a combination of X and Z error.



Q) Summary of the intuitions

onceptually easy?

e Measurements discretize errors
 Measurements of multi-qubit operators can sometimes preserve

entanglement
 Some multi-qubit operators allows the detection of a bit flip or a phase

flip.
* The multi-qubit operators should preserve the logical states

Can we generalize these ideas?
How does it work in practice?



Quantum Error C\c{rection
(beyond intuition)



® The stabilizer formalism
shceptually easy?

Some definitions
* Pauli operators:

(0 =i (/1 0
Y—az—(l, o) 2_03_(0 _1)
o« P, = (il,X,Z) ={+1,%i} x{I,X,Y,Z} has a group structure and is
called the single-qubit Pauli group.

e P, = P1®" is the n-qubit Pauli group, and we call its elements “Pauli
strings”.



® The stabilizer formalism
ramework of QEC

We are interested in Pauli string operators that “stabilizes” a quantum state
and we call these operators “stabilizers”.

K stabilizes |Y) if K |Y) = +1|y)

What are the stabilizers of |0} ? {I,Z}
What are the stabilizers of |1) ? {I,—Z}

What are the stabilizers of\/—lE (100) + |11) ? {II,ZZ,XX,—YY}
What are the stabilizers of «|00) + f|11)Va,B? {I,ZZ}




® The stabilizer formalism
al-framework of QEC

A n-qubit quantum state is stabilized by 2™ operators.

e |ts stabilizer operators have an abelian group structure.

ex. |00) + |11) stabilized by {I1,XX,ZZ,—YY}

* The stabilizer group of 2™ elements have n linearly independent
generators

ex. {II,XX,ZZ,—YY} is generated by (XX, ZZ)

(XX Z2Z = =YY, XX XX =11)

* A stabilizer group of n — k (n-qubit) Pauli strings generators, stabilizes a
k-qubit Hilbert subspace (in a n-qubit Hilbert space)

ex. {11, ZZ} stabilizes a|00) + B|11) = a|0); + B|1); (with |ii) = |i);)




Q Link with quantum error correction
framework of QEC

A [|n, k, d]] Quantum Error
Correcting code encode k logical
qubits into n physical qubits to
protect quantum information
against

Syndrome through parity check
measurement

Hyexy = sy,

Hye; = sy

The stabilizer formalism gives you a way
to encode a k-qubit Hilbert subspace
into a n-qubit Hilbert space with
constraints given by stabilizer operators.
Stabilizer group generated by:

Ky Kni)
Ki|h), = (=D |9),
1— (Wl Ki|),

2 -



Q Link / challenges: classical and quantum error correction
teane-Shor codes

Classical codes protects against bitflips: He = s
 We can create quantum codes that protects against blitflips using H —
K,;s, Z-type stabilizers
(1 1 0 AVAIE
H=(, 1 1)
 We can create quantum codes that protects against phaseflips using

H — Ky;s, X-type stabilizers
(1 1 O X1X513
H = (o 1 1) T LX, Xy

Hy

Hy



Q Link / challenges: classical and quantum error correction
teane-Shor codes

How to make codes that protects against phaseflips and bitflips?
Use two classical codes Hy, H;! (Kxq ... Kxn K71, ... Kzm)

Can we do always that?
* The stabilizer groups protect a qubit subspace

* The stabilizer group should be abelian [KXi,KZj] =0

Show that this constraint requires Hy. H; = 0?
Not so easy to find such conditions!



Q Link / challenges: classical and quantum error correction

yne-Shor codes

Relate stabilizers to Hy and H; matrices:
The i" row of Hy corresponds to Kyy;:

Notations: (Hy)ij = hi;, (Hz)i; = h{;

ijs
X0=1X1 =%,
hij 1 X
X] — Ii lfhij — 0,
X

hi _
XV =X ifh{; =1

.
SO:KXi — H]X] /

hZ.
Same for Hz: Kz = I1; Z, J



Q Link / challenges: classical and quantum error correction
e-Shor codes

/1 (205 - ()

X YA Z X

xhijzhirj = zhij xhij lth =0, or hlZ,] = 0 (at least one is )
X YA YA X

xtizhi = —zhix"i ik =nf =1

X YA VA Z X
SO Xhl]Zhl’] ( 1)h Xhl] Zhl,]Xh
X Z
So Hj(XhijZ u]) _ (_DZ]h Xh, H Zhu]X

And the operators commute if the two rows have value 1 on an even number of elements.
We can see this is true for all rows if Hy. HY = 0



Q Simple example with quantum error correction
ane-Shor codes

Steane quantum code:

Circle constraints @
Qi Xi|Y) = |Y)

Second constraints

R Zi|Y) = [YP) (b, S
Define two parity check matrices @
HX C)’I(-' —_ O

H2C§=O

CSS codes: @ @ @

HyHI =0



® The Steane Code

ane-Shor codes

Steane quantum code:

Circle constraints
®: Xilw) = [¥) (H = Hy) O

Second constraints

®; Zi|) = [Py (H = Hy) o
i ) -

This works since:
HH' =0



Q) How to measure stabilizer operators?

abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

|0) Always this outcome
Ancilla:|0) @<

1)



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

CNOT flip the ancilla
qubitif gb 1 in state |1)

Qubit 1 ®

Ancilla:|0)

4 )

N

S
S



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

|0)

. 0)
Qubit1 ) ? < or
BIL) 1)

CNOT flip the ancilla
qubitif gb 1 in state |1)

«|0,0)
£l1,1) |0) Indirect measurement of
Ancilla:|0) () @ < q}lllb;kl, (qsing ancilla) in
|1) the Z basis



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

CNOT flip the ancilla
qubitif gb 1 in state |1)
Qubit 1 ?
|0) Indirect measurement of
Ancilla:|0) a [v/] < qubit 1 (using ancilla) in

|1) the Z basis



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

Qubit 2 ®
Qubit 1 ?
0)
Ancilla:|0) ()() @<
1)



Q) How to measure stabilizer operators?

abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

.- a[00) +p|01) a|00) +
Qubit 2 + i)+ * < or
Qubit 1 * $101) + y|10)

0)(|00) +0111))
[1)(B101) +7110) _~|0)
DD e "

D

Ancilla:|0)



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

Qubit 2 v
Qubit 1 *

|0) Indirect measurement of
Ancilla:|0) anTan @< qubit 1 and 2 (using

|1) ancilla) in the ZZ basis



Q) How to measure stabilizer operators?
abilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

Qubit2  —H ? H H = %(1 _11)
Qubit 1 — H ? H HXH =7
HZH =X
|0) Indirect measurement of
Ancilla:|0) anTan @< qubit 1 and 2 (using

|1) ancilla) in the XX basis



Q) How to measure stabilizer operators?
tabilizer measurements

Rule of thumb:
Multi-qubit operators are hard to measure.

Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

Qubit 4 ?
Qubit 3 ?
Qubit 2 ?
bit 1
Quo | |0) Indirect
Ancilla:|0) DD @< ZZ7Z measurement

1)



@ What is quantum error correction?

A fault-tolerant quantum computer use a QEC code and QEC detection cycles to actively
detect and correct errors, using ancilla qubits.

Noise / errors X n
Logical State |lp)L g I E E EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEN ..a‘ |lp>L

Ancillas |0 ...0)

—'b Decode

Error correction cycle



Q More advanced codes

Quantum circuit

for stabilizer * =
measurements ®
7 7 ancilla ——————- ; — Measure
o O ® @ ° VAR
X n
® o o o o ’
Z Z n
Z V4

Issue: Two-qubit gates are probabilistic with photonics



Q) Implementation on a real system?

Hybrid strategies (spin + photon) to facilitate FTQC

My work at Quandela...
But | won’t talk about it



That’s all for quantum error
correction! Questions?



Link with. phot@ics?



(QQ Advantage of photonics

um computing

Photons as quantum information carriers:

e Easy, efficient, and fast single-photon operation.

* Decoherence free, can store information for arbitrary long time.

* Travel at the speed of light.

* Other paradigms of quantum computing (boson-sampling like algorithms)
* No deterministic two qubit gates / only probabilistic ones

* Photons can be lost.

Quantum error correction with graph states:
* No two-qubit gate required only measurements on graph.
e Offline generation of photonic graph states




(2 Dual-rail encoding

ntum computing

Defining a photonic qubit:
e Dual-rail encoding (2 modes for 1 photon)

L - ()
g )
L - ()
Path encoding Polarization

encoding



Q) Entanglement with linear optics

m computing

Cannot be in the qubit subspace

—R_ 12,0) = 10,2)  |ntuition why no deterministic 2-
1) - qubit gates




QQ Fusion gates

ntum computing

Focusing on a specific class of photonic gates: fusion gates
Type | fusion gates (take 2 photons and output one photon)

Detectors
Photonic o> ~ ™
qubit 1 -~ N D

50-50
Beamsplitter

Photonic o
qubit 2

Swap



QQ Fusion gates

1tum computing

F; = |0)00] ...
Detectors
Photonic | @ ® ~_— » Photon
qubit 1 -~ ®» detection
50-50
Beamsplitter

Photonic PN PN
qubit 2

Swap



QQ Fusion gates

1tum computing

F; = |0)(00] + e'?|1)(11] ...

Detectors
Photonic ~__— i» Photon
qubit 1 @ ~ ®» detection
50-50
Beamsplitter
Photonic
qubit 2 - -

Swap



QQ Fusion gates

1tum computing

F; = |0)(00] + e'?|1)(11] ...

Fail = |0){(01]
Detectors
Photonic [ e» o ~__~ »  Photon
qubit 1 o~ i®» detection

50-50
Beamsplitter

Photonic
qubit 1 -

Swap



QQ Fusion gates

1tum computing

F; = |0)(00] + e'?|1)(11] ...
Fail = |9)(01],
Fail, = |2)(10]

Detectors
Photonic ~__— i» Photon
qubit 1 @ -~ ®» detection
50-50
Beamsplitter
Photonic | @ o
qubit 1 @

Swap



QQ Fusion gates

ntum computing

In practice this gate takes 2 photons and output one

« F; = |0)00] + (—1)™|1){11] (m detector)

1

* Postselect on successful outcome. Py ccess = >

Detectors

Photonic
T~
qubit 1 {‘ ~ N
50-50

Beamsplitter

Photon
detection

Photonic o
qubit 1

Swap



QQ Fusion gates

ntum computing

In practice this gate takes 2 photons and output one
1
* Pouccess = 5

Detectors
Photonic o> ~ ™
qubit 1 -~ N B,
50-50

Beamsplitter

Photonic o
qubit 1

Swap

o —

F; = 10X00] + [1){(11]



Stabilizer states and tree
graph codes:
The graph states



Q) Partial solution: measurement-based quantum computing
ed of two-quhit gates (provided

gled resource state...)

|G = (E,V))

E edge set
(entanglement link CZ)
V vertex set
(qubits |+))

CZ =

oo O

0

0
1
0

O OO -
o O O

—1



Q) Partial solution: measurement-based quantum computing
ut the need of two-qubit gates (provided

 entangled resource state...)

Information flow

> |G = (E,V))
Pt/ N\t 1 E edge set

(entanglement link CZ)
V vertex set

A o 1 T A T T T T @® in 7 direction (C]UbltSl"‘))

P
t1e
.T T A T 1 PY ‘I.... Tin}:djrectiun
b/ N

® © ® ® & & & O Measurements:

Logical qubits, n

Quantum gate

te oo @ /7 in XY plane K,|G) = |G)
K, =

Computational depth, %



QQ Measurement-based QEC with tree graph codes
QEC

|G = (E,V)) = ( 1_1 CZL.].) |+)®veV

Perfectly defined state.
(no qubit degree of freedom)
l A lot of stabilizers




Q Measurement-based QEC with tree graph codes

QEC

Create a tree code, remove the top qubit
(and it’s related stabilizers)
Create a qubit degree of freedom:

XL:X
‘/I\' 7, =777




Q Measurement-based QEC with tree graph codes

QEC

“““““ How does it work. Suppose that you want

' ) to measure the logical Z; operator. You can
directly measure its qubits...
/ X Butyou can also indirectly measure them

A\
\ l using the stabilizers!
Z
Z 7
K, 1Y) = |Y)
K, =7, X, H Z Zyp, 1)y = X, 1_[ Zy P}
(v,W)€EE (v,w)€EE



(2 Measurement-based QEC

QEC

Noise
Error
) | ") Correction %)
Data Qubit
Syndrome
Generation | Syndrome
Measurement
000 ...0,,) —> ,| Error
| , Tl) Decoder
Ancila Qubits

Repeat Syndrome Generation

In practice, tree graphs are too simplistic, 3D lattices are the real deal!
How to generate a large graph state without deterministic gates?



QQ Fusion gates

um computing

Why this gate?

* |t combines well with graph states

* |t fuses the vertex of the two graphs

* You can create larger entangled state from smaller ones




Q) Small entangled state generation

Atum computing

We also need to produce small entangled state.

Solution 1: Linear-optics.

S — 11h . Single-photon |

R i Crosser
g 5

1), ' Beam splitter |

: ]
et TS S

Ry e
i ¢

Create a photonic GHZ state:

|000) + |111)

Requires 6 photons

Ouputs 3 entangled photons
Based on detection
outcomes

Success probability 1/32...



(2 Small entangled state generation

intum computing

We also need to produce small entangled state.

Solution 2: Deterministic generation through quantum emitters.

Entangled source of photons
* Use a spin degree of freedom as a photon entangler
* Create photonic GHZ and linear graph states




(2 Small entangled state generation

ntum computing

Optical transitions:

‘€> | ___ | Two level system:
A * Excite optically with a laser the ground state (Q(t))
* The quantum emitter is in the excited state |e)
(1) Y * The quantum emitter relaxes its energy by emitting a single
photon (in a time Ty, called the relaxation time).
* Aftert > T;, the quantum emitter is in the ground state

|g) and a single photon has been deterministically
‘8) ' — ' generated.




(2 Small entangled state generation

intum computing

Optical transitions:

Four-level system:
| — ) ( — )  The spinisin a given initial state

Spin-dependent [Ys) = a|T) + f1)
transitions * With a laser, put it in the two excited
R polarization 1L} state.
e After spontaneous emission, a photon
v \ is emitted with spin-dependent
| m' ' | -|I>— ' polarization

|¢S,ph> =a|T,R)+ B, L)
Stable spin degree of freedom



(2 Small entangled state generation

ntum computing

Optical transitions:

Spin-dependent
transitions
polarization L)
\4 \
I — J [ — I
1) [4)

Stable spin degree of freedom

[+) =11+ 1)

After first emission

[Ys,on) = alT,R) + BIL, L)
Second emission:
|Ys) = a|T,R, R) + B, L, L)
nth emission:
‘l/)s,ph> — |T>|R>®n + |~L)|L)®n

|1/J5,ph> — |O>|O>®n T |1>|1>®n
We can create a GHZ state deterministically



(2 Small entangled state generation

1tum computing

Optical transitions:

Spin-dependent
transitions
polarization L)
\4 \
I J [ I
1) [4)

Stable spin degree of freedom

|¢S,ph> = |O>®n e |1>®n

(up to single-qubit
rotations)

A

@ ~ 0@

This star graph state is in fact
0)[+)E" + [1)] )@ 1




() Advanced graph state generation
>ntangled state generation

Successful



(2 Advanced graph state generation
>ntangled state generation

l

L 7 7

. Failure
Failure



(2 Advanced graph state generation
>ntangled state generation

Recycling idea
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guantum computing



QQ Fusion based-quantum computing
ic photonic gates

General intuition #1:

* Small entangled states are easier to produce than large ones

* If we have a system which can produce a graph with success proba p¢...

 ..We can use N of these systems to produce, to produce at least 1 graph with proba
1 -1 —pa)V o1

 We can build a resource state generator which produce a small graph with arbitrarily

high probability
- ‘{:‘




QQ Fusion based-quantum computing
tic photonic gates

General intuition #2:
 Quantum gates have smaller success rate than fusion gates

* Fusion gates can have arbitrarily large success probability (provided ancilla use)
* Replace CNOT gates by fusion gates (BSM)

DetHl Detv1 Detvz DetH2
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Loss probability

of a fusion gate

Erasure probability (p.,qsure

)
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probability
of a fusion gate

~—~
72}
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® What have we seen?

Introduction about quantum error correction:
 Need to correct blitflips and phaseflips
* An introduction to the stabilizer formalism (the main framework for

QEC)

* Syndrome extraction in QEC (with circuit-based paradigm)

Introduction to graph state codes:

 Codes particularly well suited for measurement-based QEC
(photonics friendly!)

* Basic error correction schemes with trees.



® What have we seen?

Photonic ingredients to produce graph codes.

 Simple fusion gates

* Small graph state generation through linear-optics
 Small graph state generation using quantum emitters

A brief introduction about more advanced schemes
* Fusion-based quantum computing



® Disclaimer

The field of fault-tolerant quantum computing is vast! This lecture is
only an introduction.
What | haven’t discuss here
 Quantum error correction is a very active field with recent important
discoveries:
e “Standard” codes like the surface codes
 “Good” quantum error correcting codes (quantum Low-Density
Parity Check codes)
* Quantum error correction circuits
 Decoding a code is a critical problem too, not trivial at all.
* Minimum-Weight Perfect Matching / Union Find decoders



® Disclaimer

What | haven’t discuss here (follow up)
* Performing fault-tolerant gates on logically-encoded qubits
e Eastin-Knill theorem
* Lattice surgery / Magic state distillation
 Conversion from QEC to graph states
e MBQC
* Foliation technique
* The 3D “Raussendorf Harrington Goyal” lattice
* Advanced photonic gates for graph state generation
* Ancilla-photon-assisted gates
 Deep connections with guantum information theory




Thank yc;u\\
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