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The inconvenient truth about NISQ…
Why do we need fault-tolerant quantum computing?

Current architecture at Quandela Why is it great?
• Photon-native operations
• 1 qubit = 1 photon
• Fast repetition rate
• Good for NISQ algorithms

Errors… How bad are these?
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N. Maring et al., Arxiv 2306.00684 (2023)



The inconvenient truth about NISQ…
Why do we need fault-tolerant quantum computing?

Credit: Entropica Labs

Quantum 
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Errors are bad
Why do we need Fault-tolerant quantum computing?

How bad are these errors?
Quantum error correction!

• Hardware:
Reducing physical noises

𝜀 ≪ 1

• Software:
Developing a FTQC-based architecture

• Threshold theorem:
if 𝜀 < 𝜀𝑡ℎ, we can run any algorithms!
(provided the FTQC is sufficiently big!)

Credit: Google

Without handling errors
→ Only the tip of the Q Algo’s iceberg!

Shor

Shor



Architecture for real Fault-tolerant quantum computers
Find the best FTQC architecture for a photonic platform

What is the “best” architecture?
• An architecture with maximum fault-tolerance (high threshold)
• A relatively simple hardware layout (sufficiently simple to be implementable)
• An architecture with relatively small footprint (hardware overhead, energy 

consumption…)

What is an FTQC architecture?
• A method to process quantum information
• Together with a hardware layout enabling this method
• All of this being achievable in a fault-tolerant way



Outline

• Classical error correction
• Repetition code / Hamming code

• Quantum error correction
• Challenges of quantum error correction
• Discretization of errors
• Stabilizer formalism
• Simple code (Shor)

• Photonic FTQC
• Graph state structure
• How to build them?



Classical Error Correction



Classical computing using classical error correction
Simple examples of classical error correction

Simple examples of classical error correction:
• CD Rom

General idea:
𝑛, 𝑘, 𝑑

“Encode 𝑘 logical (protected) bits into 𝑛 physical (noisy) bits so 
that it is protected against 𝑑 − 1 /2 bitflips” 

Communication protocols (e.g. 5G)



Classical computing using classical error correction
The Repetition Code

The repetition code is a [𝑛, 1, 𝑛] code with a trivial decoder (majority vote)

The logical bit 𝑖 = 0 or 1 is encoded as
0𝐿 = 0…0
1𝐿 = 1…1

How does it work?

If you receive the bitstring (encoded using a 3-bit repetition code) 010, what is the 
most likely error?

Assuming independent symmetric errors (below ½), the most likely error is 
e=010 and the codeword is 0𝐿 = 000



Classical computing using classical error correction
Simpler example with classical error correction

Hamming code:
• Encode 4 logical bits 𝑙1𝑙2𝑙3𝑙4
• Into 7 physical bits 𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7

𝑏2
𝑏1

𝑏4

𝑏3
𝑏7𝑏6

𝑏5

Circle constraints 
⊕𝑖 𝑏𝑖 = 0

𝐻 =
1
1
0

1 0 1
0 1 1
1 1 1

1 0 0
0 1 0
0 0 1



Classical computing using classical error correction
Simpler example with classical error correction

Hamming code:
• Encode 4 logical bits 𝑙1𝑙2𝑙3𝑙4
• Into 7 physical bits 𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7

𝑏2
𝑏1

𝑏4

𝑏3
𝑏7𝑏6

𝑏5

Circle constraints 
⊕𝑖 𝑏𝑖 = 0

Invalid codeword 𝑐 = 𝑐1𝑐2𝑐3𝑐4𝑐5𝑐6𝑐7
Syndrome s = 𝐻 𝑐𝑇 ≠ 0

Example:  𝐻 𝑐𝑇 ≠ 0,1, 1 𝑇



Classical computing using classical error correction
Simpler example with classical error correction

General problem of error correction:
“Given a syndrome s, recover ideally the most 
likely error that outputs a syndrome 𝑠”

"𝑐𝑇 = 𝐻−1𝑠“

𝑏2
𝑏1

𝑏4

𝑏3
𝑏7𝑏6

𝑏5

Given an error sampling probability 𝑝 (𝑒𝑖), 
We want (ideally):

𝑀𝐿𝐷𝑒𝑐 p ei , s
= argminei p ei H ei = s]

What is the most likely error, having this 
syndrome?

Assuming independent symmetric errors (below ½), the most likely error is a 𝑏3 bitflip only



Classical computing using classical error correction
General summary of classical error correction

Correction

Syndrome 
extraction
(𝐻𝑒 = 𝑠) 

Decoding 

𝑐 + 𝑒

Noise
(𝑒)

𝑐 𝑐 + 𝑒

𝑠

Ƹ𝑒

𝑐 + 𝑒 + Ƹ𝑒

Successful decoding
𝑐 + 𝑒 + Ƹ𝑒 = 𝑐
𝑒 + Ƹ𝑒 = 0



That’s all for
Classical Error Correction.

Questions?



Quantum Error Correction

(intuition)



Why isn’t it conceptually easy?
Challenges of Quantum error correction

Challenge 1:
Errors in classical computing are discrete.
Errors in quantum computing are continuous…

Challenge 3:
Classical error correction needs to protect against bitflips
In quantum computing, the phase is also important!

Challenge 2:
Measuring a classical bit is trivial.
Measuring a quantum state destroy this state (Born’s rule / Wave function collapse…)



Why isn’t it conceptually easy?
Errors are continuous…

Qubit: 𝜓 𝜃, 𝜑 = cos
𝜃

2
0 + ei𝜙 sin

𝜃

2
|1⟩ Target state: 0

Noisy state: 1 − 𝜀 0 + 𝜀 |1⟩

Measurement in the computational basis
( |0⟩ / |1⟩)
→ |0⟩ with probability 1 − 𝜀
→ |1⟩ with probability 𝜀

Intuition 1:
Errors are continuous but measurements 
discretize these errors



Why isn’t it conceptually easy?
Measurements destroy quantum states and entanglement

Entangled qubits:
1

2
( 00 + |11⟩)

Measurement of the two qubits in the 
computational basis (𝑍 𝑏𝑎𝑠𝑖𝑠)
( |0⟩ / |1⟩)

→ |0⟩, |0⟩ with probability 
1

2

→ |1⟩, |1⟩ with probability 
1

2

No entanglement anymore…

Intuition 2:
Some multi-qubit operator measurements 
preserve entanglement and some states.

Is it true for all measurements???
Measurement of the operator 𝑍𝑍
𝑍 𝑖 = −1 𝑖 𝑖 for 𝑖 = 0,1

What are the measurement outcomes and 
the resulting states?

Same question for 
1

2
( 00 − |11⟩)?

+1 for both and the state remains the same



Why isn’t it conceptually easy?
Repetition codes for quantum states

𝜓 𝐿 = 𝛼 0 𝐿 + 𝛽 1 𝐿

With 0 𝐿 = 000 , 1 𝐿 = 111
Noise:
Some small unwanted 𝑋 rotations on 
the physical qubits…

෪𝜓𝐿 = 1 − 𝜀 𝜓 𝐿

+ 𝜀/3 𝛼 100 + 𝛽 011

+ 𝜀/3 𝛼 010 + 𝛽 101

+ 𝜀/3 𝛼 001 + 𝛽 110 + o(𝜀) Link with the parity check matrix?

Measure 𝑍1𝑍2 (+1 outcome and nothing 
happens)
Measure 𝑍2𝑍3
- either +1 outcome and projection in the 
𝜓 𝐿 state.

- either -1 outcome and error detection

𝛼|001⟩ + 𝛽|110⟩
We have obtained the syndrome 
measurement s=(0, 1)



Why isn’t it conceptually easy?
Repetition codes for quantum states

Correction
Syndrome 
extraction 

(Measurement 
𝑍1𝑍2, 𝑍2𝑍3) 

Decoding 

|෪𝜓𝐿⟩

Noise
(𝜀)

𝜓𝐿

𝑠
(measurement outcomes)

𝑋3

|෪𝜓𝐿⟩ 𝜓𝐿 + 𝑜(𝜀)

What about phase flips?



Why isn’t it conceptually easy?
The Shor code

𝜓 𝐿 = 𝛼 0 𝐿 + 𝛽 1 𝐿

With 0 𝐿 = 000 , 1 𝐿 = 111
Noise:
Some small unwanted 𝑍 rotations 
on the physical qubits…

෪𝜓𝐿 = 1 − 𝜀 𝜓 𝐿

+ 𝜀 (𝛼 000 − 𝛽|111⟩)

Still a valid logical state!
→Impossible to correct a phase flip…

Alternative code
𝜓 𝐿 = 𝛼 0 𝐿 + 𝛽 1 𝐿

With 0 𝐿 = +++ , 1 𝐿 = −−−

± =
1

2
0 ± 1 ))

Show that it is resistant against phase 
flips (Z).
What is the operator measurements?

𝑋 ± = ±|±⟩
Same discussion as in the usual repetition code, but with 𝑋1𝑋2
operator measurements



Why isn’t it conceptually easy?
The Shor code

Concatenating two repetition codes!
0 𝐿𝑍 = 000 , 1 𝐿𝑍 = 111

0 𝐿𝑋 = +++ , 1 𝐿𝑋 = −−−

Concatenation: Replace physical qubits from the first code 𝐿1 by logical 
qubits from the second code.
Shor code:

0 𝑆ℎ𝑜𝑟 = | +𝐿𝑍 +𝐿𝑍+𝐿𝑍⟩, 1 𝑆ℎ𝑜𝑟 = −𝐿𝑍 −𝐿𝑍 −𝐿𝑍

At the 𝐿𝑋 levels, correct one phase flip, at the 𝐿𝑍 level, correct one bit flip.

What about 𝑌 = −𝑖𝑍𝑋 rotation errors?

± 𝐿𝑍 = 000 ± 111



Why isn’t it conceptually easy?
The Shor code

𝛼 0 𝑆ℎ𝑜𝑟 + 𝛽 1 𝑆ℎ𝑜𝑟 = 𝛼 000 + 111 ⊗3 + 𝛽 000 − 111 ⊗3

If an 𝑋 error occur on one qubit, one block will look like 001 ± 110 ,
(modulo where the bit flip occurs) which can be corrected by 𝑍1𝑍2/𝑍2𝑍3 in 
that block.
If a 𝑍 error occurs on one qubit, one qubit block will be flipped:

𝛼( 000 + |111⟩)( 000 + |111⟩)( 000 − |111⟩)
+𝛽( 000 − |111⟩)( 000 − |111⟩)( 000 + |111⟩)

Which can be detected by measuring logical 𝑋𝐿1𝑋𝐿2/𝑋𝐿2𝑋𝐿3operator on 

each block 𝑋𝐿1 = 𝑋1𝑋2𝑋3, 𝑋𝐿2 = 𝑋4𝑋5𝑋6, 𝑋𝐿3 = 𝑋7𝑋8𝑋9



Why isn’t it conceptually easy?
The Shor code

𝛼 0 𝑆ℎ𝑜𝑟 + 𝛽 1 𝑆ℎ𝑜𝑟 = 𝛼 000 + 111 ⊗3 + 𝛽 000 − 111 ⊗3

If a Y error occurs on a given qubit, it’ll flip both a qubit on a given block and 
the total block sign which can be signaled by having the X and Z errors at 
the same time

𝑌1 000 ± 111 = −𝑖𝑍𝑋 000 ± 111 = −𝑖 100 ∓ |011⟩
(The global phase 𝑖 is irrelevant)
So a 𝑌 error can be corrected as a combination of 𝑋 and 𝑍 error.



Why isn’t it conceptually easy?
Summary of the intuitions

• Measurements discretize errors
• Measurements of multi-qubit operators can sometimes preserve 

entanglement
• Some multi-qubit operators allows the detection of a bit flip or a phase 

flip.
• The multi-qubit operators should preserve the logical states

Can we generalize these ideas?
How does it work in practice?



Quantum Error Correction

(beyond intuition)



Why isn’t it conceptually easy?
The stabilizer formalism

Some definitions
• Pauli operators:

𝐼 = 𝜎0 =
1 0
0 1

𝑋 = 𝜎1 =
0 1
1 0

𝑌 = 𝜎2 =
0 −𝑖
𝑖 0

𝑍 = 𝜎3 =
1 0
0 −1

• 𝑃1 = 𝑖𝐼, 𝑋, 𝑍 = ±1,±𝑖 × 𝐼, 𝑋, 𝑌, 𝑍 has a group structure and is 
called the single-qubit Pauli group.

• 𝑃𝑛 = 𝑃1
⊗𝑛 is the 𝑛-qubit Pauli group, and we call its elements “Pauli 

strings”.



The theoretical framework of QEC
The stabilizer formalism

We are interested in Pauli string operators that “stabilizes” a quantum state 
and we call these operators “stabilizers”.

𝐾 stabilizes |𝜓⟩ if      𝐾 𝜓 = +1|𝜓⟩

What are the stabilizers of |0⟩ ?

𝐼𝐼, 𝑍𝑍, 𝑋𝑋,−𝑌𝑌

We are interested in Pauli string operators that “stabilizes” a quantum state 
and we call these operators “stabilizers”.

𝐾 stabilizes |𝜓⟩ if      𝐾 𝜓 = +1|𝜓⟩

What are the stabilizers of 1 ?

What are the stabilizers of  𝛼 00 + 𝛽|11⟩ ∀𝛼, 𝛽 ?

What are the stabilizers of 
1

2
( 00 + |11⟩) ?

𝐼, 𝑍

𝐼, −𝑍

𝐼, 𝑍𝑍



The theoretical framework of QEC
The stabilizer formalism

A n-qubit quantum state is stabilized by 2𝑛 operators.
• Its stabilizer operators have an abelian group structure.
ex. 00 + |11⟩ stabilized by {𝐼𝐼, 𝑋𝑋, 𝑍𝑍,−𝑌𝑌}
• The stabilizer group of 𝟐𝒏 elements have 𝒏 linearly independent 

generators
ex. {𝐼𝐼, 𝑋𝑋, 𝑍𝑍,−𝑌𝑌} is generated by ⟨𝑋𝑋, 𝑍𝑍⟩
(𝑋𝑋 𝑍𝑍 = −𝑌𝑌, 𝑋𝑋 𝑋𝑋 = 𝐼𝐼)
• A stabilizer group of 𝒏 − 𝒌 (n-qubit) Pauli strings generators, stabilizes a 

𝐤-qubit Hilbert subspace (in a 𝑛-qubit Hilbert space) 
ex. {𝐼𝐼, 𝑍𝑍} stabilizes 𝛼 00 + 𝛽 11 = 𝛼 0 𝐿 + 𝛽 1 𝐿 (with 𝑖𝑖 = 𝑖 𝐿)



The theoretical framework of QEC
Link with quantum error correction

A [ 𝑛, 𝑘, 𝑑 ] Quantum Error 
Correcting code encode 𝑘 logical 
qubits into 𝑛 physical qubits to 
protect quantum information 
against (𝑑 − 1)/2 errors.

Syndrome through parity check 
measurement 

H𝑋𝑒𝑋 = 𝑠𝑋,
H𝑍𝑒𝑍 = 𝑠𝑍

The stabilizer formalism gives you a way 
to encode a 𝑘-qubit Hilbert subspace 
into a 𝑛-qubit Hilbert space with 
constraints given by stabilizer operators.
Stabilizer group generated by:

𝐾1, …𝐾𝑛−𝑘
𝐾𝑖 ෨𝜓

𝐿
= −1 𝑠𝑖 ෨𝜓

𝐿

1 − ⟨ ෨𝜓|𝐿𝐾𝑖 ෨𝜓
𝐿

2
= 𝑠𝑖

If ∃𝑖, 𝑠𝑖 = 1, an error is detected



Calderbank-Steane-Shor codes
Link / challenges: classical and quantum error correction

Classical codes protects against bitflips: 𝐻𝑒 = 𝑠
• We can create quantum codes that protects against blitflips using 𝐻 →

𝐾𝑍𝑖s, 𝑍-type stabilizers

𝐻 =
1 1 0
0 1 1

→
𝑍1𝑍2𝐼3
𝐼1𝑍2𝑍3

, 𝐻𝑍

• We can create quantum codes that protects against phaseflips using 
𝐻 → 𝐾𝑋𝑖s, 𝑋-type stabilizers

𝐻 =
1 1 0
0 1 1

→
𝑋1𝑋2𝐼3
𝐼1𝑋2𝑋3

, 𝐻𝑋



Calderbank-Steane-Shor codes
Link / challenges: classical and quantum error correction

How to make codes that protects against phaseflips and bitflips?
Use two classical codes 𝐻𝑋, 𝐻𝑍!  ⟨𝐾𝑋1,…𝐾𝑋𝑛,𝐾𝑍1,…𝐾𝑍𝑚⟩
Can we do always that?
• The stabilizer groups protect a qubit subspace

• The stabilizer group should be abelian 𝐾𝑋𝑖 , 𝐾𝑍𝑗 = 0

Show that this constraint requires 𝐻𝑋. 𝐻𝑍
𝑇 = 0?

Not so easy to find such conditions!



Calderbank-Steane-Shor codes
Link / challenges: classical and quantum error correction

Relate stabilizers to 𝐻𝑋 and 𝐻𝑍 matrices:
The 𝑖𝑡ℎ row of 𝐻𝑋 corresponds to 𝐾𝑋𝑖:

Notations: 𝐻𝑋 𝑖𝑗 = ℎ𝑖𝑗
𝑋 , 𝐻𝑍 𝑖𝑗 = ℎ𝑖𝑗

𝑍

𝑋0 = 𝐼, 𝑋1 = 𝑋, 

𝑋
𝑗

ℎ𝑖𝑗
𝑋

= 𝐼𝑖 if ℎ𝑖𝑗
𝑋 = 0, 

𝑋
𝑗

ℎ𝑖𝑗
𝑋

= 𝑋𝑖 if ℎ𝑖𝑗
𝑋 = 1

So: 𝐾𝑋𝑖 = ς𝑗 𝑋𝑗
ℎ𝑖𝑗
𝑋

Same for 𝐻𝑍: 𝐾𝑍𝑖 = ς𝑗 𝑍𝑗
ℎ𝑖𝑗
𝑍



Calderbank-Steane-Shor codes
Link / challenges: classical and quantum error correction

Commutation relations: 𝐾𝑋𝑖 , 𝐾𝑍𝑖′ = 0

if ς𝑗 𝑋
𝑗

ℎ𝑖𝑗
𝑋

𝑍
𝑗

ℎ
𝑖′𝑗
𝑍

= ς𝑗 𝑍
𝑗

ℎ
𝑖′𝑗
𝑍

𝑋
𝑗

ℎ𝑖𝑗
𝑋

𝑋ℎ𝑖𝑗
𝑋

𝑍ℎ𝑖′𝑗
𝑍

= 𝑍ℎ𝑖′𝑗
𝑍

𝑋ℎ𝑖𝑗
𝑋

if ℎ𝑖𝑗
𝑋 = 0, or ℎ𝑖′𝑗

𝑍 = 0 (at least one is I)

𝑋ℎ𝑖𝑗
𝑋

𝑍ℎ𝑖′𝑗
𝑍

= −𝑍ℎ𝑖′𝑗
𝑍

𝑋ℎ𝑖𝑗
𝑋

if ℎ𝑖𝑗
𝑋 = ℎ𝑖′𝑗

𝑍 = 1

So 𝑋ℎ𝑖𝑗
𝑋

𝑍ℎ𝑖′𝑗
𝑍

= −1 ℎ𝑖𝑗
𝑋×ℎ𝑖𝑗

𝑍

𝑍ℎ𝑖′𝑗
𝑍

𝑋ℎ𝑖𝑗
𝑋

So ς𝑗(𝑋
ℎ𝑖𝑗
𝑋

𝑍ℎ𝑖′𝑗
𝑍

) = −1 σ𝑗 ℎ𝑖𝑗
𝑋×ℎ𝑖′𝑗

𝑍
ς𝑗 𝑍

ℎ𝑖′𝑗
𝑍

𝑋ℎ𝑖𝑗
𝑋

And the operators commute if the two rows have value 1 on an even number of elements.
We can see this is true for all rows if 𝐻𝑋 . 𝐻𝑍

𝑇 = 0



Calderbank-Steane-Shor codes
Simple example with quantum error correction

Steane quantum code:

𝑏2
𝑏1

𝑏4

𝑏3
𝑏7𝑏6

𝑏5
Circle constraints 
⊗𝑖 𝑋𝑖|𝜓⟩ = |𝜓⟩
Second constraints 
⊗𝑖 𝑍𝑖|𝜓⟩ = |𝜓⟩

Define two parity check matrices
𝐻𝑋 𝑐𝑋

𝑇 = 0
𝐻𝑍 𝑐𝑍

𝑇 = 0
CSS codes:

𝐻𝑋𝐻𝑍
𝑇 = 0



Calderbank-Steane-Shor codes
The Steane Code

Steane quantum code:

𝑏2
𝑏1

𝑏4

𝑏3
𝑏7𝑏6

𝑏5
Circle constraints
⊗𝑖 𝑋𝑖|𝜓⟩ = |𝜓⟩ (𝐻 = 𝐻𝑋)
Second constraints
⊗𝑖 𝑍𝑖 𝜓 = 𝜓 (𝐻 = 𝐻𝑍)

𝐻 =
1
1
0

1 0 1
0 1 1
1 1 1

1 0 0
0 1 0
0 0 1

This works since:
𝐻 𝐻𝑇 = 0



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Always this outcome0

|1⟩



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

CNOT flip the ancilla 
qubit if qb 1 in state |1⟩



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

Indirect measurement of 
qubit 1 (using ancilla) in 
the 𝑍 basis

𝛼 0, 0
𝛽|1, 1⟩

𝛼 0
𝛽|1⟩

CNOT flip the ancilla 
qubit if qb 1 in state |1⟩0

or
|1⟩



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

CNOT flip the ancilla 
qubit if qb 1 in state |1⟩

Indirect measurement of 
qubit 1 (using ancilla) in 
the 𝑍 basis



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

Qubit 2



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

Qubit 2
𝛼 00 + 𝛽 01
+ 𝛾 10 + 𝛿|11⟩

0 𝛼 00 + 𝛿 11
|1⟩(𝛽 01 + 𝛾 10 )

𝛼 00 + 𝛿 11
or

𝛽 01 + 𝛾 10



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

Qubit 2

Indirect measurement of 
qubit 1 and 2 (using 
ancilla) in the 𝑍𝑍 basis



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 1

0

|1⟩

Qubit 2 𝐻 =
1

2

1 1
1 −1

𝐻𝑋𝐻 = 𝑍
𝐻𝑍𝐻 = 𝑋

H

H

H

H

Indirect measurement of 
qubit 1 and 2 (using 
ancilla) in the 𝑋𝑋 basis



Ancilla-assisted stabilizer measurements
How to measure stabilizer operators?

Rule of thumb:
Multi-qubit operators are hard to measure.
Single-qubit operators are easy to measure.
Strategy: Convert a multi-qubit operator measurement into a single-qubit measurement.

𝑀𝑍Ancilla:|0⟩

Qubit 3

0

|1⟩

Qubit 4

Indirect 
𝑍𝑍𝑍𝑍 measurement

Qubit 1

Qubit 2



What is quantum error correction?

A fault-tolerant quantum computer use a QEC code and QEC detection cycles to actively 
detect and correct errors, using ancilla qubits.

Error correction cycle

Decode
Ancillas |0…0 ⟩

𝜓 𝐿

Entangle

Noise / errors

Measure
ancillas

Correct

Logical state 𝜓 𝐿

× 𝑛



More advanced codes

Measure 
𝑍𝑎𝑍𝑏𝑍𝑐𝑍𝑑

ancilla

Quantum circuit 
for stabilizer 

measurements

|0…0 ⟩

𝜓 𝐿𝜓 𝐿

× 𝑛

Issue: Two-qubit gates are probabilistic with photonics



Implementation on a real system?

Hybrid strategies (spin + photon) to facilitate FTQC
https://quantum-journal.org/papers/q-2024-07-24-1423/

My work at Quandela…
But I won’t talk about it



That’s all for quantum error 
correction! Questions?



Link with photonics?



Photons as quantum information carriers:
• Easy, efficient, and fast single-photon operation.
• Decoherence free, can store information for arbitrary long time.
• Travel at the speed of light.
• Other paradigms of quantum computing (boson-sampling like algorithms)
• No deterministic two qubit gates / only probabilistic ones
• Photons can be lost.

Quantum error correction with graph states:
• No two-qubit gate required only measurements on graph.
• Offline generation of photonic graph states

Advantage of photonics
Photonic quantum computing



Defining a photonic qubit:
• Dual-rail encoding (2 modes for 1 photon)

|1⟩

|0⟩

Dual-rail encoding
Photonic quantum computing

Path encoding Polarization 
encoding



Entanglement with linear optics

𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑚
𝑇 = 𝑈 Ԧ𝑎 = 𝑈 𝑎1, 𝑎2, … , 𝑎𝑚

𝑇

U …

𝑏𝑚

𝑏1
𝑏2

𝑎𝑚

𝑎1
𝑎2

…

|1⟩

|1⟩

2,0 − |0, 2⟩
Cannot be in the qubit subspace
Intuition why no deterministic 2-
qubit gates

Photonic quantum computing



Fusion gates

Focusing on a specific class of photonic gates: fusion gates
Type I fusion gates (take 2 photons and output one photon) 

Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 2

Photonic 
qubit 1

Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 2

Photonic 
qubit 1

𝐹𝐼 = |0⟩⟨00|…

Photon 
detection

Fusion gates
Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 2

Photonic 
qubit 1

𝐹𝐼 = 0 00 + 𝑒𝑖𝜙|1⟩⟨11|…

Photon 
detection

Fusion gates
Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 1

Photonic 
qubit 1

𝐹𝐼 = 0 00 + 𝑒𝑖𝜙|1⟩⟨11|…
𝐹𝑎𝑖𝑙 = |∅⟩⟨01|

Photon 
detection

Fusion gates
Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 1

Photonic 
qubit 1

𝐹𝐼 = 0 00 + 𝑒𝑖𝜙|1⟩⟨11|…
𝐹𝑎𝑖𝑙 = |∅⟩⟨01|,
𝐹𝑎𝑖𝑙2 = |2⟩⟨10|

Photon 
detection

Fusion gates
Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 1

Photonic 
qubit 1

In practice this gate takes 2 photons and output one
• 𝐹𝐼 = 0 00 + −1 𝑚 1 11 (𝑚 detector)

• Postselect on successful outcome. 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
1

2

Photon 
detection

Fusion gates
Photonic quantum computing



Swap 

50-50 
Beamsplitter

Detectors

Photonic 
qubit 1

Photonic 
qubit 1

In practice this gate takes 2 photons and output one

• 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
1

2

𝜋

𝐹𝐼 = 0 00 + 1 11

Fusion gates
Photonic quantum computing



Stabilizer states and tree 
graph codes:

The graph states



Partial solution: measurement-based quantum computing
A method to perform QC without the need of two-qubit gates (provided 
that you have a large entangled resource state…)

𝐺 = 𝐸, 𝑉
𝐸 edge set

(entanglement link 𝐶𝑍)
𝑉 vertex set
(qubits + )

𝐶𝑍 =

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −1

R. Raussendorf & HJ. Briegel, PRL 86, 9188 (2001)



Partial solution: measurement-based quantum computing
A method to perform QC without the need of two-qubit gates (provided 
that you have a large entangled resource state…)

𝐺 = 𝐸, 𝑉
𝐸 edge set

(entanglement link 𝐶𝑍)
𝑉 vertex set
(qubits + )

𝐾𝑣 𝐺 = 𝐺

𝐾𝑣 = 𝑋𝑣 ෑ

𝑣,𝑤 ∈𝐸

𝑍𝑤

R. Raussendorf & HJ. Briegel, PRL 86, 9188 (2001)



Measurement-based QEC with tree graph codes
MBQEC

𝐺 = 𝐸, 𝑉 = ෑ

𝑖,𝑗 ∈𝐸

𝐶𝑍𝑖𝑗 + ⊗𝑣∈𝑉

Perfectly defined state.
(no qubit degree of freedom)
A lot of stabilizers

∀𝑣 ∈ 𝑉,𝐾𝑣 = 𝑋𝑣 ෑ

(𝑣,𝑤)∈E

𝑍𝑤



Create a tree code, remove the top qubit 
(and it’s related stabilizers)
Create a qubit degree of freedom:

𝑋𝐿 = 𝑋 𝑍𝑍𝑍
𝑍𝐿 = 𝑍𝑍𝑍

Measurement-based QEC with tree graph codes
MBQEC



How does it work. Suppose that you want 
to measure the logical 𝑍𝐿 operator. You can 
directly measure its qubits…
But you can also indirectly measure them 
using the stabilizers!

𝑋

𝑍
𝑍 𝑍

𝐾𝑣 𝜓 = |𝜓⟩

𝐾𝑣 = 𝑍𝑣0𝑋𝑣 ෑ

𝑣,𝑤 ∈𝐸
𝑤≠𝑣0

𝑍𝑤 𝑍𝑣0 𝜓 = 𝑋𝑣 ෑ

𝑣,𝑤 ∈𝐸
𝑤≠𝑣0

𝑍𝑤 |𝜓⟩

Measurement-based QEC with tree graph codes
MBQEC



Credit: Xanadu

In practice, tree graphs are too simplistic, 3D lattices are the real deal!
How to generate a large graph state without deterministic gates? 

Measurement-based QEC
MBQEC



Why this gate?
• It combines well with graph states
• It fuses the vertex of the two graphs
• You can create larger entangled state from smaller ones

Type I 
gate

Fusion gates
Photonic quantum computing



Small entangled state generation
Photonic quantum computing

We also need to produce small entangled state.

Solution 1: Linear-optics.

Create a photonic GHZ state:
• 000 + 111
• Requires 6 photons
• Ouputs 3 entangled photons
• Based on detection 

outcomes
• Success probability 1/32…



We also need to produce small entangled state.

Solution 2: Deterministic generation through quantum emitters.

Entangled source of photons
• Use a spin degree of freedom as a photon entangler
• Create photonic GHZ  and linear graph states

N. Coste et al., Nat. Photon. 17, 582 (2023)

Small entangled state generation
Photonic quantum computing



Optical transitions:

Two level system:
• Excite optically with a laser the ground state (Ω 𝑡 )
• The quantum emitter is in the excited state |𝑒⟩
• The quantum emitter relaxes its energy by emitting a single 

photon (in a time 𝑇1, called the relaxation time).
• After 𝑡 ≫ 𝑇1, the quantum emitter is in the ground state 
|𝑔⟩ and a single photon has been deterministically 
generated.

Small entangled state generation
Photonic quantum computing



Optical transitions:

Four-level system:
• The spin is in a given initial state

𝜓𝑠 = 𝛼 ↑ + 𝛽 ↓
• With a laser, put it in the two excited 

state.
• After spontaneous emission, a photon 

is emitted with spin-dependent 
polarization

𝜓𝑠,𝑝ℎ = 𝛼 ↑, 𝑅 + 𝛽 ↓, 𝐿

Stable spin degree of freedom

Spin-dependent 
transitions 

polarization

Small entangled state generation
Photonic quantum computing



Optical transitions:

+ = ↑ + ↓
After first emission

𝜓𝑠,𝑝ℎ = 𝛼 ↑, 𝑅 + 𝛽 ↓, 𝐿

Second emission:
𝜓𝑠 = 𝛼 ↑, 𝑅, 𝑅 + 𝛽 ↓, 𝐿, 𝐿

𝑛𝑡ℎ emission:

𝜓𝑠,𝑝ℎ = ↑ 𝑅 ⊗𝑛 + ↓ 𝐿 ⊗𝑛

𝜓𝑠,𝑝ℎ = 0 0 ⊗𝑛 + 1 1 ⊗𝑛

We can create a GHZ state deterministicallyStable spin degree of freedom

Spin-dependent 
transitions 

polarization

Small entangled state generation
Photonic quantum computing



Optical transitions:

𝜓𝑠,𝑝ℎ = 0 ⊗𝑛 + 1 ⊗𝑛

Stable spin degree of freedom

Spin-dependent 
transitions 

polarization

=
(up to single-qubit 

rotations)

Small entangled state generation
Photonic quantum computing

This star graph state is in fact

0 + ⊗𝑛−1 + 1 − ⊗𝑛−1



Advanced graph state generation
Combining fusions and small entangled state generation

Successful



Failure Failure

Z

Z Z Z

Advanced graph state generation
Combining fusions and small entangled state generation



Recycling idea

Advanced graph state generation
Combining fusions and small entangled state generation



Fusion-based

quantum computing



Fusion based-quantum computing
Mixing MBQC + probabilistic photonic gates

General intuition #1:
• Small entangled states are easier to produce than large ones
• If we have a system which can produce a graph with success proba 𝑝𝐺…
• …We can use 𝑁 of these systems to produce, to produce at least 1 graph with proba

1 − 1 − 𝑝𝐺
𝑁

𝑁→∞
1

• We can build a resource state generator which produce a small graph with arbitrarily 
high probability

RSG



Fusion based-quantum computing
Mixing MBQC + probabilistic photonic gates

General intuition #2:
• Quantum gates have smaller success rate than fusion gates
• Fusion gates can have arbitrarily large success probability (provided ancilla use)
• Replace CNOT gates by fusion gates (BSM)

F



Fusion based-quantum computing
Mixing MBQC + probabilistic photonic gates



Fusion-based quantum computing
Performances

Lo
ss

 p
ro

b
ab

ili
ty

o
f 

a 
fu

si
o

n
 g

at
e

Computational error 
probability

of a fusion gate (2,2)-Shor encoded
6-ring

1 − 𝑝𝑒𝑟𝑎𝑠𝑢𝑟𝑒
= 1 − 𝑝𝑓𝑎𝑖𝑙 1 − 𝑝𝑙𝑜𝑠𝑠

𝑛



Conclusion



What have we seen?

Introduction about quantum error correction:
• Need to correct blitflips and phaseflips
• An introduction to the stabilizer formalism (the main framework for 

QEC)
• Syndrome extraction in QEC (with circuit-based paradigm)

Introduction to graph state codes:
• Codes particularly well suited for measurement-based QEC 

(photonics friendly!)
• Basic error correction schemes with trees.



What have we seen?

Photonic ingredients to produce graph codes.
• Simple fusion gates
• Small graph state generation through linear-optics
• Small graph state generation using quantum emitters

A brief introduction about more advanced schemes
• Fusion-based quantum computing



Disclaimer

The field of fault-tolerant quantum computing is vast! This lecture is 
only an introduction.
What I haven’t discuss here
• Quantum error correction is a very active field with recent important 

discoveries:
• “Standard” codes like the surface codes
• “Good” quantum error correcting codes (quantum Low-Density 

Parity Check codes)
• Quantum error correction circuits

• Decoding a code is a critical problem too, not trivial at all.
• Minimum-Weight Perfect Matching / Union Find decoders

https://www.youtube.com/watch?v=tNACODva-6A



Disclaimer

What I haven’t discuss here (follow up)
• Performing fault-tolerant gates on logically-encoded qubits

• Eastin-Knill theorem
• Lattice surgery / Magic state distillation

• Conversion from QEC to graph states
• MBQC
• Foliation technique
• The 3D “Raussendorf Harrington Goyal” lattice

• Advanced photonic gates for graph state generation
• Ancilla-photon-assisted gates

• Deep connections with quantum information theory

https://www.youtube.com/watch?v=zBjAoOW3xHk

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.070501



Thank you
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